

UNIVERSITÄT RERN

Vorlesung Herbstsemester 2014

«Wissensformen und Wissensvermittlung»

Vorlesung vom 24. September 2014

Prof. Dr. Walter Herzog

Universität Bern Institut für Erziehungswissenschaft Abteilung Pädagogische Psychologie

UNIVERSITÄT Bern

2. Evolution des Menschen

Dichotomische Klassifikationen von Wissensformen

- Logik der Vernunft vs. Logik des Herzens (Blaise Pascal)
- Erkenntnis der Natur vs. Erkenntnis der Geschichte (GIAMBATTISTA VICO)
- Naturwissenschaften vs. Geisteswissenschaften (WILHELM DILTHEY)
- nomothetische vs. idiographische Erkenntnis (WILHELM WINDELBAND)
- Primär- vs. Sekundärprozesse (SIGMUND FREUD)
- deklaratives vs. prozedurales Wissen (JOHN ANDERSON)
- diskursive vs. präsentative Symbolik (Susanne Langer)
- implizites vs. explizites Wissen (MICHAEL POLANYI)
- engagiertes vs. distanziertes Denken (NORBERT ELIAS)
- wildes vs. gezähmtes Denken (Claude Lévi-Strauss)
- knowing that vs. knowing how (GILBERT RYLE)
- experientielles vs. rationales System (SEYMOUR EPSTEIN)
- exploratorisch vs. erklärend (MICHAEL HAMPE)
- experimentelle vs. korrelative Forschung (LEE CRONBACH)
- System 1 vs. System 2 (Daniel Kahneman u. a.)
- aristotelisches vs. galileisches Weltbild (KURT LEWIN)
- analoge vs. digitale Kommunikation (PAUL WATZLAWICK)
- paradigmatische vs. narrative Denkart (JEROME BRUNER)

Tabelle 1: Approximative Geschichte des Universums

Jahre vor unserer Zeit	Ereignisse bezüglich Evolution und Geschichte des Menschen	Wissensformen
50	Digitale Revolution (Computer, Internet u.a.)	
200	Industrielle Revolution	
400	Entstehung der neuzeitlichen Wissenschaft	Wissenschaft
600	Erfindung des Buchdrucks	
2'000	Gründung der Weltreligionen: Judentum, Christentum, Islam, Buddhismus, Hinduismus	Religion
2'500	Hochblüte der griechischen Kultur: Alphabetschrift; erste Münzen; «vom Mythos zum Logos»	Schriftsprache
5'000	Frühe Hochkulturen: Mesopotamien, Ägypten, Indien, China; erste Städte und Stadtstaaten	
10'000	«Neolithische Revolution»: Ackerbau, Viehzucht, Sesshaftigkeit, Arbeitsteilung (im Vorderen Orient: «fruchtbarer Halbmond»)	
70'000	«Kognitive Revolution»: Beginn der menschlichen Kultur und Geschichte: verfeinerte Geräte, Waffen, Kunst, Musik, Schmuck, Mythos; Einschränkung der natürlichen Selöektion; «Out of Africa II» (Homo sapiens)	Mythos
150'000	Homo sapiens: Theory of Mind, Lautsprache, Kreativität	Sprache
260'000	Neandertaler	
800'000	Beherrschung des Feuers	
1.9 Mio	«Out of Africa I»: die ersten Menschen (Homo) wandern von Afrika in andere Kontinente aus	
2.5 Mio	Homo: Steinwerkzeuge, soziale Intelligenz, beschleunigte Gehirnentwicklung	
6 Mio	Hominiden («great apes»; Menschenaffen): aufrechter Gang	Anschauung
60 Mio	Primaten: Koordination von Sehen und Greifen	
65 Mio	Dinosaurier sterben aus; wachsende Dominanz der Säugetiere	
800 Mio	Entstehung von mehrzelligen Organismen (Pflanzen, Pilze, Tiere)	Körper
1'500 Mio	Entstehung Eukaryoten	
3'500 Mio	Entstehung von Leben (Bakterien)	
4'600 Mio	Entstehung von Sonne, Sonnensystem und Erde	
13'700 Mio	Entstehung des Universums: «Urknall»	

b UNIVERSITÄT BERN

b UNIVERSITÄT RERN

2.1 Biologische Evolutionstheorie

Leben wird über Generationen weitergegeben.

Dabei verändern sich die Lebensformen.

2.1 Biologische Evolutionstheorie

UNIVERSITÄ BERN

Grundprinzipien der (biologischen) Evolutionstheorie

- 1. Die Individuen einer Spezies unterscheiden sich hinsichtlich ihrer Physiologie, ihrer Morphologie und ihres Verhaltens (Prinzip der Variation).
- 2. Die Nachkommen ähneln im Durchschnitt den Eltern mehr als irgendwelchen anderen Exemplaren der Gattung, d.h. ein Teil der Variation zwischen den Individuen wird durch Vererbung auf die Nachkommen übertragen (Prinzip der Heredität).
- 3. Die Individuen einer Spezies unterscheiden sich in der Zahl ihrer Nachkommen (Prinzip der differentiellen Fitness).
- 4. Es werden mehr Nachkommen geboren als überlebens- bzw. reproduktionsfähig sind (Prinzip der Überproduktion von Nachkommen).

2.1 Biologische Evolutionstheorie

UNIVERSITÄT BERN

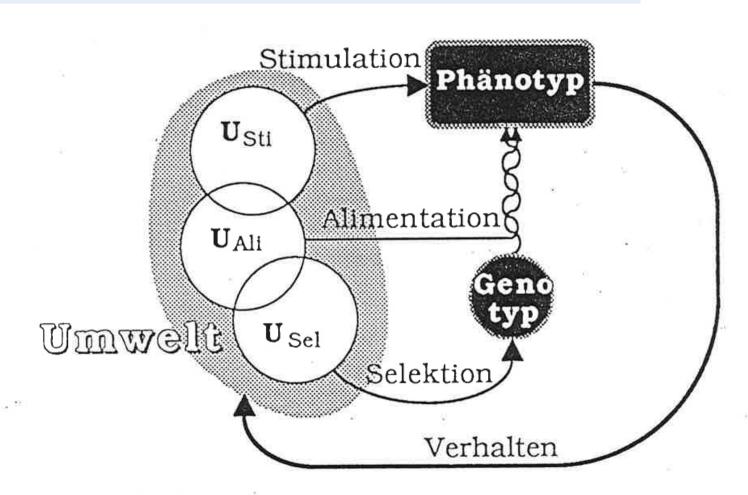


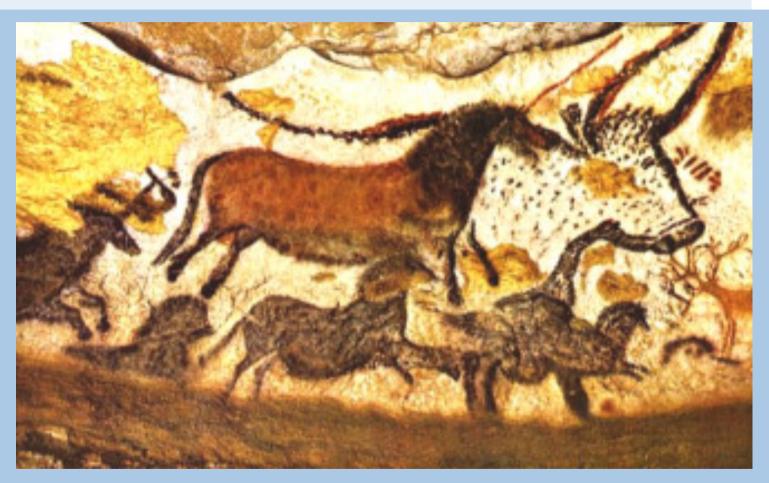
Abb. 2 Anlage-Umwelt-Interaktion

UNIVERSITÄ BERN

2.1 Biologische Evolutionstheorie

Natürliche Auslese (Selektion)

Prinzip der Variation + Prinzip der Überproduktion von Nachkommen + Prinzip der differentiellen Fitness → «Kampf ums Dasein» (Selektion)


Im «Kampf ums Dasein» überleben jene Lebewesen, die für das Leben besser gerüstet sind.

Dazu gehört auch, dass sie sich erfolgreicher fortpflanzen, d.h. mehr Nachkommen erzeugen.

UNIVERSITÄ RERN

2.1 Biologische Evolutionstheorie

Höhle von Lascaut (Südfrankreich): ca. 20'000 Jahre v.u.Z.

2.1 Biologische Evolutionstheorie

Dank ihrer kulturellen Entwicklung, die vor ca. 50'000 Jahren einsetzte, sind die Menschen der (biologischen) Selektion nur mehr bedingt ausgesetzt.

«Wir haben dem Druck der natürlichen Selektion die Gestaltungskraft genommen.»

NORBERT BISCHOF: Das Rätsel Ödipus. Die biologischen Wurzeln des Urkonflikts von Intimität und Autonomie. München: Piper 1985, S. 575

2.1 Biologische Evolutionstheorie

UNIVERSITÄ RERN

Die Ergebnisse *früherer* Selektionsprozesse bestimmen als psychische Dispositionen auch das Verhalten der heutigen Menschen.

Beispiel: Bindungsverhalten von Kleinkindern

UNIVERSITÄT BERN

2.2 Primäre und sekundäre Kompetenzen

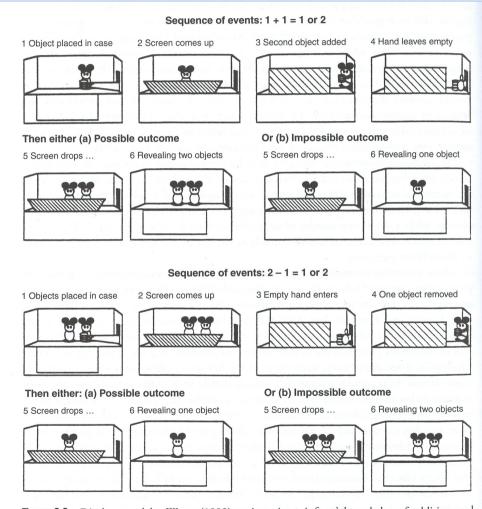
DAVID C. GEARY (*1957)

b UNIVERSITÄT REDN

2.2 Primäre und sekundäre Kompetenzen

Beispiel einer biologisch primären Kompetenz: Lautsprache Beispiel einer biologisch sekundären Kompetenz: Schriftsprache

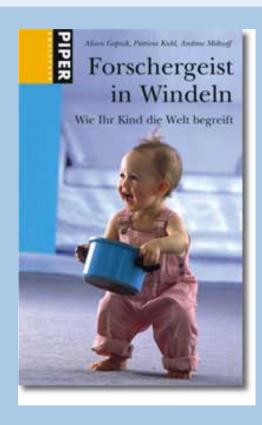
b UNIVERSITÄT BERN

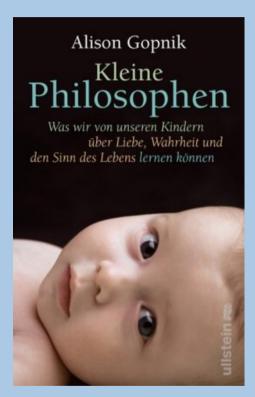

2.2 Primäre und sekundäre Kompetenzen

Primäre und sekundäre mathematische Kompetenzen: vgl. Synopse II, S. 3

UNIVERSITÄT BERN

2.2 Primäre und sekundäre Kompetenzen


Figure 6.9 Displays used by Wynn (1992) to investigate infants' knowledge of addition and subtraction. The addition event sequence is above and subtraction event sequence below.


aus: J. Gavin Bremner: Cognitive Development: Knowledge of the Physical World. In: Gavin Bremner & Alan Fogel (eds.): Blackwell Handbook of Infant Development. Oxford: Blackwell 2001, p. 99-138.

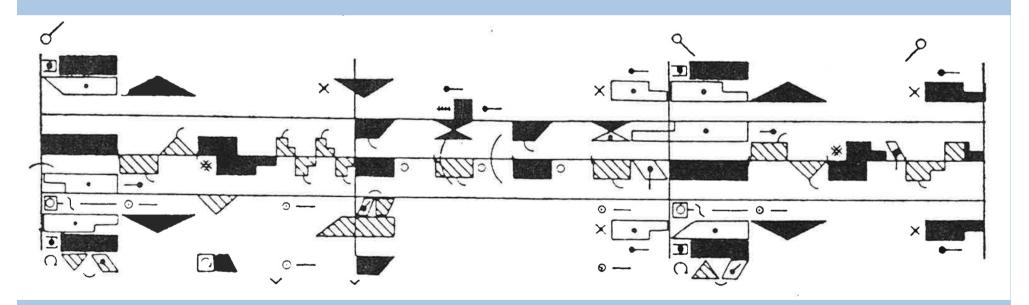
UNIVERSITÄT BERN

2.2 Primäre und sekundäre Kompetenzen

b UNIVERSITÄ

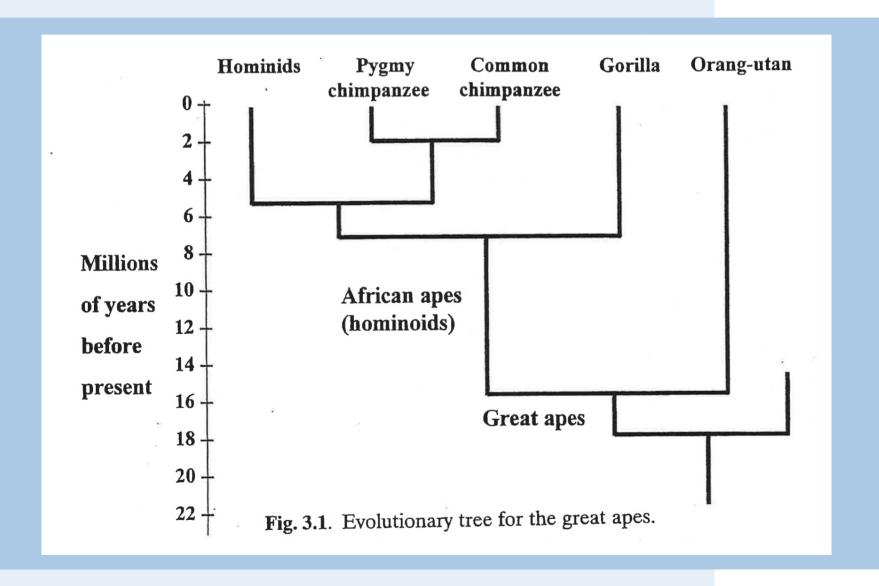
2.2 Primäre und sekundäre Kompetenzen

Primäre und sekundäre mathematische Kompetenzen: vgl. Synopse II, S. 3


Primäre und sekundäre motivationale Kompetenzen: vgl. Synopse II, S. 4f.

2.2 Primäre und sekundäre Kompetenzen

b UNIVERSITÄT BERN


Laban-Notation

UNIVERSITÄT

UNIVERSITÄT RERN

UNIVERSITÄT BERN

Tages-Anzeiger · Dienstag, 13. Februar 2007

WISSEN

36

Uralte Werkzeuge von Schimpansen entdeckt

In Westafrika benutzten Schimpansen schon vor 4300 Jahren Steinhammer, wie eine neue Studie zeigt.

Von Barbara Reye

In der linken Hand hält das Schimpansenweibchen einen grossen Stein, hebt ihn hoch und haut mit voller Kraft zu. Die Nuss ist geknackt, und sie sowie ihr Junges klauben sich die nahrhafte Leckerei aus der harten Schale heraus. Solche Szenen spielen sich tagtäglich im westafrikanischen Taï-Nationalpark in der Elfenbeinküste ab, wo Schimpansen fünf verschiedene Arten von Nüssen knacken. Und insgesamt 30 verschiedene Typen von Werkzeugen kennen – vom Stäbchen, Schwämmchen bis hin zu massiven Steinen aus Granit.

Nun fand der Schweizer Zoologe Chris-

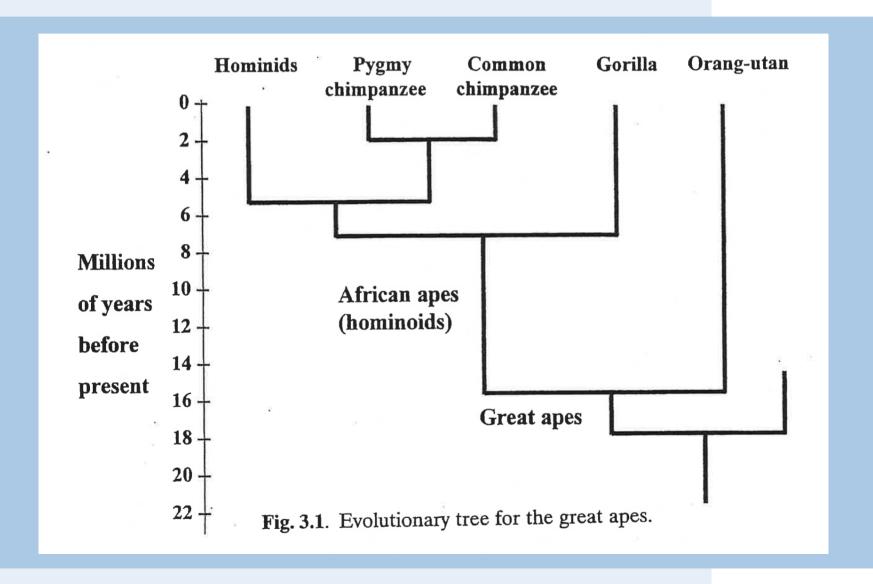
tophe Boesch vom Leipziger Max-Planck-Institut zusammen mit Archäologen der University of Calgary erstmals auch Beweise, dass westafrikanische Schimpansen bereits seit Tausenden von Jahren Nüsse mit Steinwerkzeugen zerschlagen (PNAS, 12.2.2007). Die Forscher vermuten, dass diese Art des Werkzeuggebrauchs ihren Ursprung beim gemeinsamen Vorfahren von Mensch und Schimpanse hat, anstatt beispielsweise unabhängig voneinander sowohl bei den Hominiden als auch den Schimpansen entstanden zu sein.

«Der Gebrauch von Werkzeug ist somit nicht nur typisch für den Menschen», betont Hedwige Boesch vom Max-Planck-Institut in Leipzig, die mit ihrem Mann zusammen im Taï-Wald während 12 Jahren das Verhalten von Schimpansen beobachtet und analysiert hat. Die dort jetzt ausgegrabenen Steine haben typische Abnutzungserscheinungen, wie sie ähnlich auch bei alten, von Menschenhand gefertigten Steinwerkzeugen vorkommen und bei je-

BILD CHRISTOPHE BOESCH

Nussknacker aus Stein.

nen, die durch die heute noch lebenden Schimpansen bekannt sind.


Das Forscherteam fand auf den Steinen aber auch verschiedene Arten von Stärkekörnern, die teilweise als Überreste einheimischer Nüsse identifiziert werden konnten. «Es ist erstaunlich», sagt Hedwige Boesch, «dass diese trotz den extremen Bedingungen im tropischen Regenwald erhalten geblieben sind.»

Die gefundenen Werkzeuge sind 4300 Jahre alt, was nach menschlichem Massstab der Epoche der «Later Stone Age» entspricht. Somit hat das Nussknackverhalten bei Schimpansen seit langem Tradition und wurde stets von Generation zu Generation weitergegeben. Und auch heute bringt eine Mutter ihrem Nachwuchs immer noch bei, wie man mit einem Steinhammer richtig zuhaut.

www.eva.mpg.de/primat/staff/ boesch/press.html www.wildchimps.org

UNIVERSITÄT BERN

^D Universitäi Bern

Rekonstruktion der Anthropogenese

- Verhaltensweisen, die sich beim heutigen Menschen und bei heutigen Menschenaffen (insbes. Schimpansen) finden, waren vermutlich auch schon bei den gemeinsamen Vorfahren von Menschen und Menschenaffen vorhanden.
- Verhaltensweisen des Menschen, die sich bei Menschenaffen (insbes. Schimpansen) nicht finden, sind das Ergebnis der besonderen Evolution, die von dem gemeinsamen Vorfahren von Mensch und Menschenaffen zum (heutigen) Menschen geführt hat.
- Um Verhaltensweisen, die für den Menschen spezifisch sind, aufzudecken, ist der Vergleich von erwachsenen Menschenaffen (insbes. Schimpansen) mit menschlichen Kindern besonders aufschlussreich.

UNIVERSITÄ BERN

«We begin our natural history of the evolutionary emergence of uniquely human thinking with a focus on the last common ancestor of humans and other extant primates. Our best living models for this creature are humans' closest primate relatives, the nonhuman great apes ..., comprising chimpanzees, bonobos, gorillas, and orangutans – especially chimpanzees and bonobos, who diverged from humans most recently, around 6 million years ago. When cognitive abilities are similar among the four species of great ape but different in humans, we presume that the apes have conserved their skills from the last common ancestor (or before) whereas humans have evolved something new,»

MICHAEL TOMASELLO: A Natural History of Human Thinking. Cambridge, Mass.: Harvard University Press 2014, S. 15

Eine wichtige Unterscheidung

Homologie: Ein Merkmal, das bei verschiedenen Lebewesen

vorhanden ist und eine gemeinsame evolutionäre

Abstammung aufweist, nennt man homolog.

Analogie: Ein Merkmal, das bei verschiedenen Lebewesen

vorhanden ist, aber nur funktional übereinstimmt,

nennt man analog.

UNIVERSITÄT BERN

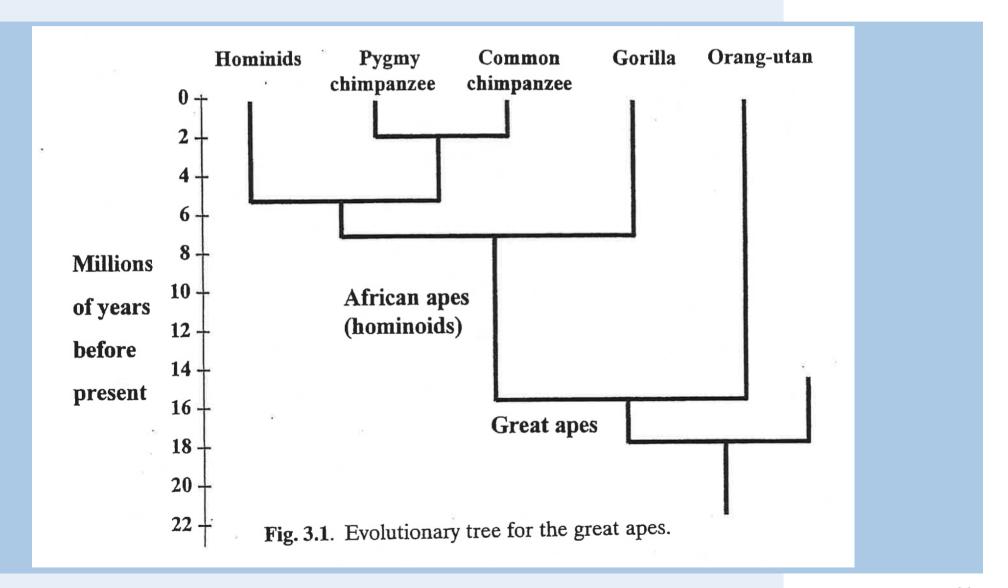
2.3 Vorformen des Menschen

INDOGERMANISCHE UND NICHT-INDOGERMANISCHE VOKABELN

INDOGERMANISCHE SPRACHEN

Englisch	one	two	three	mother	brother	sister
Deutsch	eins	zwei	drei	Mutter	Bruder	Schwester
Französisch	un	deux	trois	mère	frère	sœur
Latein	unus	duo	tres	mater	frater	soror
Russisch	odin	dwa	tri	mat'	brat	sestra
Irisch	oen	do	tri	mathir	brathir	siur
Tocharisch	sas	wu	trey	macer	procer	ser
Litauisch	vienas	du	trys	motina	brolis	seser
Sanskrit	eka	duva	trayas	matar	bhratar	svasar
UIG^*	oynos	dwo	treyes	mater	bhrater	suesor

NICHT-INDOGERMANISCHE SPRACHEN


Finnisch	yksi	kaksi	kolme	äiti	veli sisar
Foré*	ka	tara	kakaga	nano	naganto nanona

^{*} UIG steht für Urindogermanisch, die rekonstruierte Grundsprache der ersten Indogermanen. Foré ist eine Sprache des Hochlands von Neuguinea. Beachten Sie die starke Ähnlichkeit der Wörter bei den indogermanischen Sprachen und die völlige Verschiedenheit bei den nicht-indogermanischen Sprachen.

u^{b}

2.3 Vorformen des Menschen

UNIVERSITÄT Bern

UNIVERSITÄT BERN

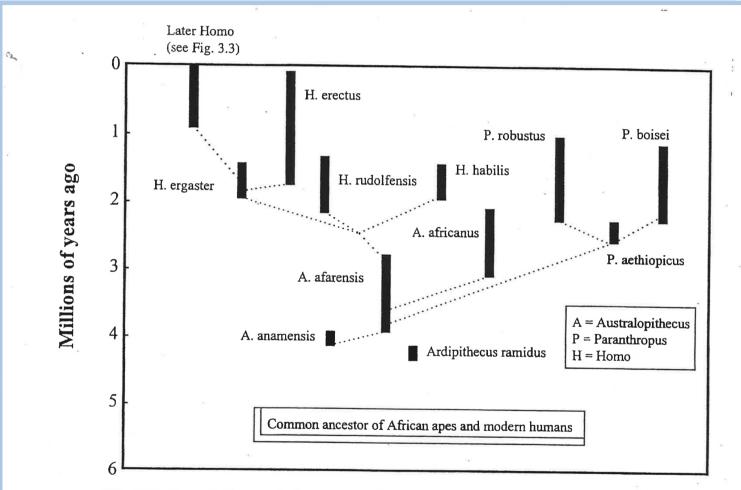


Fig. 3.2. Speculative evolutionary tree for the hominids, excluding later Homo.

u^{b}

UNIVERSITÄT BERN

2.3 Vorformen des Menschen

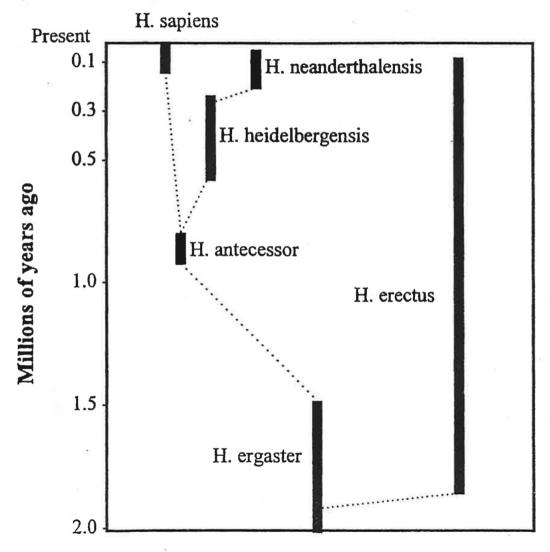
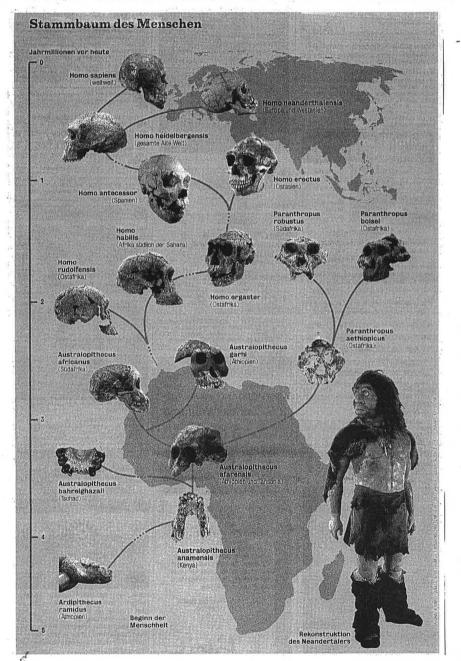



Fig. 3.3. Speculative evolutionary tree for later *Homo*.

Die berühmten Stars der Steinzeit

UNIVERSITÄT BERN